УДК 621.383 (075.8) ББК 32.852 Е74

Ермолаева Н.В., Смолин А.Ю., Литвин Н.В. **Фотопреобразователи солнечной энергии**: Учебное пособие. – М.: НИЯУ МИФИ, 2013. – 228 с.

В пособии рассмотрены основные физические процессы, протекающие в полупроводниковых и органических солнечных элементах при преобразовании солнечного излучения в электрическую энергию. Представлены соотношения, позволяющие оптимизировать конструкцию и параметры солнечных элементов. Проведен анализ особенностей различных видов и конструкций солнечных элементов, их преимуществ и недостатков, дальнейших перспектив развития и применения. Приведены и проанализированы факторы, влияющие на эффективность и выходные характеристики солнечных элементов.

Пособие составлено в соответствии с Государственным образовательным стандартом по дисциплине «Фотопреобразователи солнечной энергии». Предназначено для организации самостоятельной работы студентов очной формы обучения по направлению подготовки 210100 «Электроника и наноэлектроника», профиль подготовки «Микроэлектроника и твердотельная электроника», а также для аспирантов, научных сотрудников и инженеров-технологов, специализирующихся в области технологии материалов электронной техники.

Пособие подготовлено в рамках Программы создания и развития НИЯУ МИФИ.

Рецензент: A.A. Баранник, канд. техн. наук, доцент каф. «Физика и микроэлектроника» ВИТИ НИЯУ МИФИ

ISBN 978-5-7262-1722-2 © Национальный исследовательский ядерный университет «МИФИ», 2013

ОГЛАВЛЕНИЕ

Предисловие	5
Введение	
1. Солнечная энергетика. Основные понятия	8
1.1. Солнечная энергетика, перспективы ее развития.	
Основные направления использования солнечной энергии	8
1.2. Сравнительный анализ фотоэлектрических преобразователей	16
1.3. Состав солнечного излучения	23
1.4. Концентрирование света	26
Вопросы для самопроверки	28
2. Физические принципы работы солнечного элемента	30
2.1. Принцип работы приборов с электронно-дырочными	
переходами	30
2.2. Физический принцип работы элемента с гомогенным	
переходом	43
2.3. Физический принцип работы элемента с гетерогенным	
переходом	52
2.4. Физический принцип работы структур с барьером Шоттки	
и в системах металл-диэлектрик-полупроводник,	
полупроводник-диэлектрик-полупроводник	
2.5. Омические контакты	67
Вопросы для самопроверки	
3. Расчет КПД преобразования солнечной энергии	74
3.1. Идеальный солнечный элемент, параметры и характеристики	
работы, идеальная эффективность преобразования	
3.2. Вольт-амперная характеристика реальных СЭ	94
3.3. Влияние температуры и радиации на КПД солнечного	
элемента	
Вопросы для самопроверки	
4. Кремниевые солнечные элементы	. 107
4.1. Кремниевый солнечный элемент на основе гомогенного	
р-п-перехода	
4.2. Конструкции кремниевых солнечных элементов	
Вопросы для самопроверки	. 136
5. Солнечные элементы ч гетеропереходами и	
F J J F	. 138
5.1. Фотоэлектрические преобразователи на основе	
гетероструктур соединений $A^{III}B^V$.138

	Ä

5.2. Гетеропереход проводящее стекло-полупроводник	154
5.3. Каскадный солнечный элемент с гетеропереходами	
5.4. Арсенид0галлиевые солнечные элементы	
с переменной шириной зоны и барьерами Шоттки	165
5.5. Солнечные элементы на МДП-структурах, их преимущества	
и конструкции. Перспективы практического использования	167
Вопросы для самопроверки	
6. Тонкопленочные солнечные элементы.	
6.1. Оценка параметров работы тонкопленочных солнечных	
элементов	170
6.2. Тонкопленочные солнечные элементы на основе сульфидов	
и теллуридов кадмия	173
6.3. Солнечные элементы на основе многокомпонентных	
соединений со структурой халькопирита	175
Вопросы для самопроверки	185
7. Органические солнечные элементы	187
7.1. Преимущества и недостатки органических солнечных	
элементов	
7.2. Принцип работы органических фотоэлементов	
7.3. Типы органических фотоэлементов	192
7.4. Перспективы использования органических фотоэлементов	
Вопросы для самопроверки	
8. Концентрирование света	200
8.1. Виды концентраторов, зависимость идеального КПД	
элемента от степени концентрации	200
8.2. Примеры использования Si- и GaAs-элементов	
для концентраторных систем	206
8.3. СЭ с использованием селективного разложения	
солнечного спектра	209
8.4. Перспективы применения концентраторных солнечных	
модулей	
Вопросы для самопроверки	214
9. Наноструктуры в солнечной энергетике	215
Вопросы для самопроверки	
Заключение	
Список использованной литературы	223